Structural and magnetic properties of UFe6Ga6

نویسندگان

  • A. P. Gonçalves
  • M. Godinho
  • M. Almeida
چکیده

UFe6Ga6 polycrystalline samples were prepared by arc-melting, and single crystals were grown by the Czochralski method. This compound crystallizes in the orthorhombic ScFe6Ga6-type structure (space group Immm, aZ5.0560(4), bZ8.5484(7) and cZ8.6914(7) Å), an ordered variant of the ThMn12-type structure. A ferromagnetic-type transition at TCZ530(5) K is seen in the magnetization and A.C.-susceptibility measurements, and no other magnetic anomaly is observed down to 5 K. Single crystal magnetization measurements along the three different crystallographic axes indicated a as the easy direction, with a spontaneous magnetization MSZ12.3 mB/f.u. at 5 K. The analysis of the Fe Mössbauer spectroscopy data indicated magnetic hyperfine fields, Bhf, significantly lower on 4f sites than on 8k sites, in agreement with the trend already observed on UFexAl12Kx, where the average Bhf were found to increase with the iron–iron interatomic distances. q 2005 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Europium Doping on the Structural and Magnetic Properties of GdMnO3 Multiferroic Ceramics

Single phase Eu doped GdMnO3 ceramics were prepared using solid state reaction route. Several different characterization techniques were used to investigate the structural and magnetic properties of the samples, including X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX) and Vibrating Sample Magnetometer (VSM). All samples indicated single p...

متن کامل

Synthesis and Investigation of Structural, Magnetic and Antibacterial Properties of Calcium-Magnesium Ferrite Nanoparticles by Thermal Treatment Method

This paper reports optical, magnetic and antibacterial properties of calcium-magnesium nanostructure which was prepared by a simple thermal treatment method. Calcination was conducted at temperatures 500 K, The influence of calcination temperature on the degree of crystallinity, microstructure, and phase composition was investigated by different characterization techniques, i.e., X-ray diffract...

متن کامل

The Effect of Zn- Cr Substitution on the Structural and Magnetic Properties of Cobalt Ferrite Nanoparticles

In this investigation, the structural and magnetic properties of Cr and Zn substituted Co ferrite with the general formula Co1-xZnxFe2-xCrxO4 (x= 0.1, 0.3, 0.5, 0.7) as prepared by sol- gel method were studied. The structural, morphological and magnetic properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Scanning electron microscopy (SEM)...

متن کامل

Investigation of effect of magnetic ordering on structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu) using ab initio method

Structural and electronic properties of double perovskites Sr2BWO6 (B = Co, Ni, Cu)  were studied  for each of three magnetic configurations nonmagnetic, ferromagnetic, and antiferromagnetic by using density functional theory in generalized gradient approximations (GGA) and strong correlation correction (GGA + U). Due to magnetic transition from antiferromagnetic to nonmagnetic phase, an electr...

متن کامل

Introducing and investigating structural and magnetic properties of ribbons Co68.5-xFe4WxSi16.5B11 (x = 0.8, 2) in amorphous and crystalline states

In this study, for the first time, cobalt base ribbons were made by adding two different amounts of tungsten with Co67.7Fe4W0.8Si16.5B11 and Co66.5Fe4W2 Si16.5B11 compounds by melt spinning in the water. The pattern of  X-ray diffraction taken from these ribbons shows that these magnetic ribbons are amorphous. By using thermal analysis curves, taken from the ribbons, crystallization temperature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005